3.5.45 \(\int \frac {(a+b x^3)^{4/3}}{x (c+d x^3)} \, dx\)

Optimal. Leaf size=261 \[ \frac {a^{4/3} \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x^3}\right )}{2 c}-\frac {a^{4/3} \tan ^{-1}\left (\frac {2 \sqrt [3]{a+b x^3}+\sqrt [3]{a}}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} c}-\frac {a^{4/3} \log (x)}{2 c}+\frac {(b c-a d)^{4/3} \log \left (c+d x^3\right )}{6 c d^{4/3}}-\frac {(b c-a d)^{4/3} \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 c d^{4/3}}+\frac {(b c-a d)^{4/3} \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt {3}}\right )}{\sqrt {3} c d^{4/3}}+\frac {b \sqrt [3]{a+b x^3}}{d} \]

________________________________________________________________________________________

Rubi [A]  time = 0.30, antiderivative size = 261, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {446, 84, 156, 57, 617, 204, 31, 58} \begin {gather*} \frac {a^{4/3} \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x^3}\right )}{2 c}-\frac {a^{4/3} \tan ^{-1}\left (\frac {2 \sqrt [3]{a+b x^3}+\sqrt [3]{a}}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} c}-\frac {a^{4/3} \log (x)}{2 c}+\frac {(b c-a d)^{4/3} \log \left (c+d x^3\right )}{6 c d^{4/3}}-\frac {(b c-a d)^{4/3} \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 c d^{4/3}}+\frac {(b c-a d)^{4/3} \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt {3}}\right )}{\sqrt {3} c d^{4/3}}+\frac {b \sqrt [3]{a+b x^3}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^3)^(4/3)/(x*(c + d*x^3)),x]

[Out]

(b*(a + b*x^3)^(1/3))/d - (a^(4/3)*ArcTan[(a^(1/3) + 2*(a + b*x^3)^(1/3))/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*c) + ((
b*c - a*d)^(4/3)*ArcTan[(1 - (2*d^(1/3)*(a + b*x^3)^(1/3))/(b*c - a*d)^(1/3))/Sqrt[3]])/(Sqrt[3]*c*d^(4/3)) -
(a^(4/3)*Log[x])/(2*c) + ((b*c - a*d)^(4/3)*Log[c + d*x^3])/(6*c*d^(4/3)) + (a^(4/3)*Log[a^(1/3) - (a + b*x^3)
^(1/3)])/(2*c) - ((b*c - a*d)^(4/3)*Log[(b*c - a*d)^(1/3) + d^(1/3)*(a + b*x^3)^(1/3)])/(2*c*d^(4/3))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 57

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/b, 3]}, -Simp[L
og[RemoveContent[a + b*x, x]]/(2*b*q^2), x] + (-Dist[3/(2*b*q), Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x
)^(1/3)], x] - Dist[3/(2*b*q^2), Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x]
&& PosQ[(b*c - a*d)/b]

Rule 58

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[-((b*c - a*d)/b), 3]}, -Sim
p[Log[RemoveContent[a + b*x, x]]/(2*b*q^2), x] + (Dist[3/(2*b*q), Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d
*x)^(1/3)], x] + Dist[3/(2*b*q^2), Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x
] && NegQ[(b*c - a*d)/b]

Rule 84

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p -
 1))/(b*d*(p - 1)), x] + Dist[1/(b*d), Int[((b*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*(e + f*x)^(p -
 2))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^3\right )^{4/3}}{x \left (c+d x^3\right )} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {(a+b x)^{4/3}}{x (c+d x)} \, dx,x,x^3\right )\\ &=\frac {b \sqrt [3]{a+b x^3}}{d}+\frac {\operatorname {Subst}\left (\int \frac {a^2 d+b (-b c+2 a d) x}{x (a+b x)^{2/3} (c+d x)} \, dx,x,x^3\right )}{3 d}\\ &=\frac {b \sqrt [3]{a+b x^3}}{d}+\frac {a^2 \operatorname {Subst}\left (\int \frac {1}{x (a+b x)^{2/3}} \, dx,x,x^3\right )}{3 c}-\frac {(b c-a d)^2 \operatorname {Subst}\left (\int \frac {1}{(a+b x)^{2/3} (c+d x)} \, dx,x,x^3\right )}{3 c d}\\ &=\frac {b \sqrt [3]{a+b x^3}}{d}-\frac {a^{4/3} \log (x)}{2 c}+\frac {(b c-a d)^{4/3} \log \left (c+d x^3\right )}{6 c d^{4/3}}-\frac {a^{4/3} \operatorname {Subst}\left (\int \frac {1}{\sqrt [3]{a}-x} \, dx,x,\sqrt [3]{a+b x^3}\right )}{2 c}-\frac {a^{5/3} \operatorname {Subst}\left (\int \frac {1}{a^{2/3}+\sqrt [3]{a} x+x^2} \, dx,x,\sqrt [3]{a+b x^3}\right )}{2 c}-\frac {(b c-a d)^{4/3} \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt [3]{b c-a d}}{\sqrt [3]{d}}+x} \, dx,x,\sqrt [3]{a+b x^3}\right )}{2 c d^{4/3}}-\frac {(b c-a d)^{5/3} \operatorname {Subst}\left (\int \frac {1}{\frac {(b c-a d)^{2/3}}{d^{2/3}}-\frac {\sqrt [3]{b c-a d} x}{\sqrt [3]{d}}+x^2} \, dx,x,\sqrt [3]{a+b x^3}\right )}{2 c d^{5/3}}\\ &=\frac {b \sqrt [3]{a+b x^3}}{d}-\frac {a^{4/3} \log (x)}{2 c}+\frac {(b c-a d)^{4/3} \log \left (c+d x^3\right )}{6 c d^{4/3}}+\frac {a^{4/3} \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x^3}\right )}{2 c}-\frac {(b c-a d)^{4/3} \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 c d^{4/3}}+\frac {a^{4/3} \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+\frac {2 \sqrt [3]{a+b x^3}}{\sqrt [3]{a}}\right )}{c}-\frac {(b c-a d)^{4/3} \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}\right )}{c d^{4/3}}\\ &=\frac {b \sqrt [3]{a+b x^3}}{d}-\frac {a^{4/3} \tan ^{-1}\left (\frac {1+\frac {2 \sqrt [3]{a+b x^3}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt {3} c}+\frac {(b c-a d)^{4/3} \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt {3}}\right )}{\sqrt {3} c d^{4/3}}-\frac {a^{4/3} \log (x)}{2 c}+\frac {(b c-a d)^{4/3} \log \left (c+d x^3\right )}{6 c d^{4/3}}+\frac {a^{4/3} \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x^3}\right )}{2 c}-\frac {(b c-a d)^{4/3} \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 c d^{4/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.67, size = 331, normalized size = 1.27 \begin {gather*} \frac {-\left (a^{4/3} \left (\log \left (a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^3}+\left (a+b x^3\right )^{2/3}\right )-2 \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x^3}\right )+2 \sqrt {3} \tan ^{-1}\left (\frac {\frac {2 \sqrt [3]{a+b x^3}}{\sqrt [3]{a}}+1}{\sqrt {3}}\right )\right )\right )+\frac {(b c-a d) \left (\sqrt [3]{b c-a d} \log \left (-\sqrt [3]{d} \sqrt [3]{a+b x^3} \sqrt [3]{b c-a d}+(b c-a d)^{2/3}+d^{2/3} \left (a+b x^3\right )^{2/3}\right )-2 \sqrt [3]{b c-a d} \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )-2 \sqrt {3} \sqrt [3]{b c-a d} \tan ^{-1}\left (\frac {\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}-1}{\sqrt {3}}\right )+6 \sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{d^{4/3}}+6 a \sqrt [3]{a+b x^3}}{6 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^3)^(4/3)/(x*(c + d*x^3)),x]

[Out]

(6*a*(a + b*x^3)^(1/3) - a^(4/3)*(2*Sqrt[3]*ArcTan[(1 + (2*(a + b*x^3)^(1/3))/a^(1/3))/Sqrt[3]] - 2*Log[a^(1/3
) - (a + b*x^3)^(1/3)] + Log[a^(2/3) + a^(1/3)*(a + b*x^3)^(1/3) + (a + b*x^3)^(2/3)]) + ((b*c - a*d)*(6*d^(1/
3)*(a + b*x^3)^(1/3) - 2*Sqrt[3]*(b*c - a*d)^(1/3)*ArcTan[(-1 + (2*d^(1/3)*(a + b*x^3)^(1/3))/(b*c - a*d)^(1/3
))/Sqrt[3]] - 2*(b*c - a*d)^(1/3)*Log[(b*c - a*d)^(1/3) + d^(1/3)*(a + b*x^3)^(1/3)] + (b*c - a*d)^(1/3)*Log[(
b*c - a*d)^(2/3) - d^(1/3)*(b*c - a*d)^(1/3)*(a + b*x^3)^(1/3) + d^(2/3)*(a + b*x^3)^(2/3)]))/d^(4/3))/(6*c)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.65, size = 349, normalized size = 1.34 \begin {gather*} \frac {a^{4/3} \log \left (\sqrt [3]{a+b x^3}-\sqrt [3]{a}\right )}{3 c}-\frac {a^{4/3} \log \left (a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^3}+\left (a+b x^3\right )^{2/3}\right )}{6 c}-\frac {a^{4/3} \tan ^{-1}\left (\frac {2 \sqrt [3]{a+b x^3}}{\sqrt {3} \sqrt [3]{a}}+\frac {1}{\sqrt {3}}\right )}{\sqrt {3} c}-\frac {(b c-a d)^{4/3} \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{3 c d^{4/3}}+\frac {(b c-a d)^{4/3} \log \left (-\sqrt [3]{d} \sqrt [3]{a+b x^3} \sqrt [3]{b c-a d}+(b c-a d)^{2/3}+d^{2/3} \left (a+b x^3\right )^{2/3}\right )}{6 c d^{4/3}}+\frac {(b c-a d)^{4/3} \tan ^{-1}\left (\frac {1}{\sqrt {3}}-\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt {3} \sqrt [3]{b c-a d}}\right )}{\sqrt {3} c d^{4/3}}+\frac {b \sqrt [3]{a+b x^3}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a + b*x^3)^(4/3)/(x*(c + d*x^3)),x]

[Out]

(b*(a + b*x^3)^(1/3))/d - (a^(4/3)*ArcTan[1/Sqrt[3] + (2*(a + b*x^3)^(1/3))/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*c) +
((b*c - a*d)^(4/3)*ArcTan[1/Sqrt[3] - (2*d^(1/3)*(a + b*x^3)^(1/3))/(Sqrt[3]*(b*c - a*d)^(1/3))])/(Sqrt[3]*c*d
^(4/3)) + (a^(4/3)*Log[-a^(1/3) + (a + b*x^3)^(1/3)])/(3*c) - ((b*c - a*d)^(4/3)*Log[(b*c - a*d)^(1/3) + d^(1/
3)*(a + b*x^3)^(1/3)])/(3*c*d^(4/3)) - (a^(4/3)*Log[a^(2/3) + a^(1/3)*(a + b*x^3)^(1/3) + (a + b*x^3)^(2/3)])/
(6*c) + ((b*c - a*d)^(4/3)*Log[(b*c - a*d)^(2/3) - d^(1/3)*(b*c - a*d)^(1/3)*(a + b*x^3)^(1/3) + d^(2/3)*(a +
b*x^3)^(2/3)])/(6*c*d^(4/3))

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 320, normalized size = 1.23 \begin {gather*} -\frac {2 \, \sqrt {3} a^{\frac {4}{3}} d \arctan \left (\frac {2 \, \sqrt {3} {\left (b x^{3} + a\right )}^{\frac {1}{3}} a^{\frac {2}{3}} + \sqrt {3} a}{3 \, a}\right ) + a^{\frac {4}{3}} d \log \left ({\left (b x^{3} + a\right )}^{\frac {2}{3}} + {\left (b x^{3} + a\right )}^{\frac {1}{3}} a^{\frac {1}{3}} + a^{\frac {2}{3}}\right ) - 2 \, a^{\frac {4}{3}} d \log \left ({\left (b x^{3} + a\right )}^{\frac {1}{3}} - a^{\frac {1}{3}}\right ) - 2 \, \sqrt {3} {\left (b c - a d\right )} \left (\frac {b c - a d}{d}\right )^{\frac {1}{3}} \arctan \left (-\frac {2 \, \sqrt {3} {\left (b x^{3} + a\right )}^{\frac {1}{3}} d \left (\frac {b c - a d}{d}\right )^{\frac {2}{3}} - \sqrt {3} {\left (b c - a d\right )}}{3 \, {\left (b c - a d\right )}}\right ) - 6 \, {\left (b x^{3} + a\right )}^{\frac {1}{3}} b c - {\left (b c - a d\right )} \left (\frac {b c - a d}{d}\right )^{\frac {1}{3}} \log \left ({\left (b x^{3} + a\right )}^{\frac {2}{3}} - {\left (b x^{3} + a\right )}^{\frac {1}{3}} \left (\frac {b c - a d}{d}\right )^{\frac {1}{3}} + \left (\frac {b c - a d}{d}\right )^{\frac {2}{3}}\right ) + 2 \, {\left (b c - a d\right )} \left (\frac {b c - a d}{d}\right )^{\frac {1}{3}} \log \left ({\left (b x^{3} + a\right )}^{\frac {1}{3}} + \left (\frac {b c - a d}{d}\right )^{\frac {1}{3}}\right )}{6 \, c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(4/3)/x/(d*x^3+c),x, algorithm="fricas")

[Out]

-1/6*(2*sqrt(3)*a^(4/3)*d*arctan(1/3*(2*sqrt(3)*(b*x^3 + a)^(1/3)*a^(2/3) + sqrt(3)*a)/a) + a^(4/3)*d*log((b*x
^3 + a)^(2/3) + (b*x^3 + a)^(1/3)*a^(1/3) + a^(2/3)) - 2*a^(4/3)*d*log((b*x^3 + a)^(1/3) - a^(1/3)) - 2*sqrt(3
)*(b*c - a*d)*((b*c - a*d)/d)^(1/3)*arctan(-1/3*(2*sqrt(3)*(b*x^3 + a)^(1/3)*d*((b*c - a*d)/d)^(2/3) - sqrt(3)
*(b*c - a*d))/(b*c - a*d)) - 6*(b*x^3 + a)^(1/3)*b*c - (b*c - a*d)*((b*c - a*d)/d)^(1/3)*log((b*x^3 + a)^(2/3)
 - (b*x^3 + a)^(1/3)*((b*c - a*d)/d)^(1/3) + ((b*c - a*d)/d)^(2/3)) + 2*(b*c - a*d)*((b*c - a*d)/d)^(1/3)*log(
(b*x^3 + a)^(1/3) + ((b*c - a*d)/d)^(1/3)))/(c*d)

________________________________________________________________________________________

giac [A]  time = 0.84, size = 357, normalized size = 1.37 \begin {gather*} -\frac {\sqrt {3} a^{\frac {4}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, {\left (b x^{3} + a\right )}^{\frac {1}{3}} + a^{\frac {1}{3}}\right )}}{3 \, a^{\frac {1}{3}}}\right )}{3 \, c} - \frac {a^{\frac {4}{3}} \log \left ({\left (b x^{3} + a\right )}^{\frac {2}{3}} + {\left (b x^{3} + a\right )}^{\frac {1}{3}} a^{\frac {1}{3}} + a^{\frac {2}{3}}\right )}{6 \, c} + \frac {a^{\frac {4}{3}} \log \left ({\left | {\left (b x^{3} + a\right )}^{\frac {1}{3}} - a^{\frac {1}{3}} \right |}\right )}{3 \, c} + \frac {{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} \log \left ({\left | {\left (b x^{3} + a\right )}^{\frac {1}{3}} - \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} \right |}\right )}{3 \, {\left (b c^{2} d - a c d^{2}\right )}} + \frac {{\left (b x^{3} + a\right )}^{\frac {1}{3}} b}{d} - \frac {\sqrt {3} {\left (-b c d^{2} + a d^{3}\right )}^{\frac {1}{3}} {\left (b c - a d\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, {\left (b x^{3} + a\right )}^{\frac {1}{3}} + \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}}}\right )}{3 \, c d^{2}} - \frac {{\left (-b c d^{2} + a d^{3}\right )}^{\frac {1}{3}} {\left (b c - a d\right )} \log \left ({\left (b x^{3} + a\right )}^{\frac {2}{3}} + {\left (b x^{3} + a\right )}^{\frac {1}{3}} \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} + \left (-\frac {b c - a d}{d}\right )^{\frac {2}{3}}\right )}{6 \, c d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(4/3)/x/(d*x^3+c),x, algorithm="giac")

[Out]

-1/3*sqrt(3)*a^(4/3)*arctan(1/3*sqrt(3)*(2*(b*x^3 + a)^(1/3) + a^(1/3))/a^(1/3))/c - 1/6*a^(4/3)*log((b*x^3 +
a)^(2/3) + (b*x^3 + a)^(1/3)*a^(1/3) + a^(2/3))/c + 1/3*a^(4/3)*log(abs((b*x^3 + a)^(1/3) - a^(1/3)))/c + 1/3*
(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*(-(b*c - a*d)/d)^(1/3)*log(abs((b*x^3 + a)^(1/3) - (-(b*c - a*d)/d)^(1/3)))/(b
*c^2*d - a*c*d^2) + (b*x^3 + a)^(1/3)*b/d - 1/3*sqrt(3)*(-b*c*d^2 + a*d^3)^(1/3)*(b*c - a*d)*arctan(1/3*sqrt(3
)*(2*(b*x^3 + a)^(1/3) + (-(b*c - a*d)/d)^(1/3))/(-(b*c - a*d)/d)^(1/3))/(c*d^2) - 1/6*(-b*c*d^2 + a*d^3)^(1/3
)*(b*c - a*d)*log((b*x^3 + a)^(2/3) + (b*x^3 + a)^(1/3)*(-(b*c - a*d)/d)^(1/3) + (-(b*c - a*d)/d)^(2/3))/(c*d^
2)

________________________________________________________________________________________

maple [F]  time = 0.78, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (b \,x^{3}+a \right )^{\frac {4}{3}}}{\left (d \,x^{3}+c \right ) x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a)^(4/3)/x/(d*x^3+c),x)

[Out]

int((b*x^3+a)^(4/3)/x/(d*x^3+c),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (b x^{3} + a\right )}^{\frac {4}{3}}}{{\left (d x^{3} + c\right )} x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(4/3)/x/(d*x^3+c),x, algorithm="maxima")

[Out]

integrate((b*x^3 + a)^(4/3)/((d*x^3 + c)*x), x)

________________________________________________________________________________________

mupad [B]  time = 6.08, size = 796, normalized size = 3.05 \begin {gather*} \ln \left (c\,d\,{\left (-\frac {{\left (a\,d-b\,c\right )}^4}{c^3\,d^4}\right )}^{1/3}+a\,d\,{\left (b\,x^3+a\right )}^{1/3}-b\,c\,{\left (b\,x^3+a\right )}^{1/3}\right )\,{\left (-\frac {a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4}{27\,c^3\,d^4}\right )}^{1/3}+\ln \left (c\,{\left (\frac {a^4}{c^3}\right )}^{1/3}-a\,{\left (b\,x^3+a\right )}^{1/3}\right )\,{\left (\frac {a^4}{27\,c^3}\right )}^{1/3}+\frac {b\,{\left (b\,x^3+a\right )}^{1/3}}{d}-\ln \left (c\,{\left (\frac {a^4}{c^3}\right )}^{1/3}+2\,a\,{\left (b\,x^3+a\right )}^{1/3}+\sqrt {3}\,c\,{\left (\frac {a^4}{c^3}\right )}^{1/3}\,1{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,{\left (\frac {a^4}{27\,c^3}\right )}^{1/3}+\ln \left (\sqrt {3}\,c\,{\left (\frac {a^4}{c^3}\right )}^{1/3}+c\,{\left (\frac {a^4}{c^3}\right )}^{1/3}\,1{}\mathrm {i}+a\,{\left (b\,x^3+a\right )}^{1/3}\,2{}\mathrm {i}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,{\left (\frac {a^4}{27\,c^3}\right )}^{1/3}+\ln \left (\frac {3\,a^2\,b^4\,{\left (b\,x^3+a\right )}^{1/3}\,{\left (a\,d-b\,c\right )}^2\,\left (2\,a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4\right )}{d}+3\,a^2\,b^4\,c\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,{\left (-\frac {{\left (a\,d-b\,c\right )}^4}{c^3\,d^4}\right )}^{1/3}\,\left (2\,a^5\,d^5-6\,a^4\,b\,c\,d^4+10\,a^3\,b^2\,c^2\,d^3-10\,a^2\,b^3\,c^3\,d^2+5\,a\,b^4\,c^4\,d-b^5\,c^5\right )\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,{\left (-\frac {a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4}{27\,c^3\,d^4}\right )}^{1/3}-\ln \left (\frac {3\,a^2\,b^4\,{\left (b\,x^3+a\right )}^{1/3}\,{\left (a\,d-b\,c\right )}^2\,\left (2\,a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4\right )}{d}-3\,a^2\,b^4\,c\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,{\left (-\frac {{\left (a\,d-b\,c\right )}^4}{c^3\,d^4}\right )}^{1/3}\,\left (2\,a^5\,d^5-6\,a^4\,b\,c\,d^4+10\,a^3\,b^2\,c^2\,d^3-10\,a^2\,b^3\,c^3\,d^2+5\,a\,b^4\,c^4\,d-b^5\,c^5\right )\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,{\left (-\frac {a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4}{27\,c^3\,d^4}\right )}^{1/3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^3)^(4/3)/(x*(c + d*x^3)),x)

[Out]

log(c*d*(-(a*d - b*c)^4/(c^3*d^4))^(1/3) + a*d*(a + b*x^3)^(1/3) - b*c*(a + b*x^3)^(1/3))*(-(a^4*d^4 + b^4*c^4
 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3)/(27*c^3*d^4))^(1/3) + log(c*(a^4/c^3)^(1/3) - a*(a + b*x
^3)^(1/3))*(a^4/(27*c^3))^(1/3) + (b*(a + b*x^3)^(1/3))/d - log(c*(a^4/c^3)^(1/3) + 2*a*(a + b*x^3)^(1/3) + 3^
(1/2)*c*(a^4/c^3)^(1/3)*1i)*((3^(1/2)*1i)/2 + 1/2)*(a^4/(27*c^3))^(1/3) + log(c*(a^4/c^3)^(1/3)*1i + a*(a + b*
x^3)^(1/3)*2i + 3^(1/2)*c*(a^4/c^3)^(1/3))*((3^(1/2)*1i)/2 - 1/2)*(a^4/(27*c^3))^(1/3) + log((3*a^2*b^4*(a + b
*x^3)^(1/3)*(a*d - b*c)^2*(2*a^4*d^4 + b^4*c^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/d + 3*a^2
*b^4*c*((3^(1/2)*1i)/2 - 1/2)*(-(a*d - b*c)^4/(c^3*d^4))^(1/3)*(2*a^5*d^5 - b^5*c^5 - 10*a^2*b^3*c^3*d^2 + 10*
a^3*b^2*c^2*d^3 + 5*a*b^4*c^4*d - 6*a^4*b*c*d^4))*((3^(1/2)*1i)/2 - 1/2)*(-(a^4*d^4 + b^4*c^4 + 6*a^2*b^2*c^2*
d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3)/(27*c^3*d^4))^(1/3) - log((3*a^2*b^4*(a + b*x^3)^(1/3)*(a*d - b*c)^2*(2*a
^4*d^4 + b^4*c^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/d - 3*a^2*b^4*c*((3^(1/2)*1i)/2 + 1/2)*
(-(a*d - b*c)^4/(c^3*d^4))^(1/3)*(2*a^5*d^5 - b^5*c^5 - 10*a^2*b^3*c^3*d^2 + 10*a^3*b^2*c^2*d^3 + 5*a*b^4*c^4*
d - 6*a^4*b*c*d^4))*((3^(1/2)*1i)/2 + 1/2)*(-(a^4*d^4 + b^4*c^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*
c*d^3)/(27*c^3*d^4))^(1/3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x^{3}\right )^{\frac {4}{3}}}{x \left (c + d x^{3}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a)**(4/3)/x/(d*x**3+c),x)

[Out]

Integral((a + b*x**3)**(4/3)/(x*(c + d*x**3)), x)

________________________________________________________________________________________